Skip to main content

Sets

TODO

Type signatures are provisional and may contain errors.

Data jetted sets of nouns. Sets are represented as a law where the row has no duplicate elements and all elements are stored in ascending order, with the form:

(0 1 2 row)

Set Functions

isSet

(isSet x)> x : a> Bool

Checks if a value is a valid set.

isSet %[]           == 1isSet %[1 2 3]      == 1isSet (0 1 2 [])    == 1isSet (0 2 2 [])    == 0  ; Invalid set representationisSet [1 2 3]       == 0  ; Not a set, just a row

emptySet

(emptySet)> Set a

Returns an empty set.

emptySet    == %[]emptySet    == setFromRow []emptySet    == setDel 1 %[1]

setIsEmpty

(setIsEmpty xs)> xs : Set a> Bool

Checks if a set is empty.

setIsEmpty emptySet    == 1setIsEmpty %[1]        == 0setIsEmpty %[1 2 3]    == 0

setSing

(setSing e)> e : a> Set a

Creates a singleton set containing one element.

setSing 3      == %[3]setSing {a}    == %[a]setSing 0      == %[0]

setFromRow

(setFromRow xs)> xs : Row a> Set a

Creates a set from a row, removing duplicates and sorting.

setFromRow [3 1 2 1]        == %[1 2 3]setFromRow [{a} {b} {a}]    == %[a b]setFromRow [5 4 3 2 1]      == %[1 2 3 4 5]

setFromRowAsc

(setFromRowAsc xs)> xs : Row a> Set a

Creates a set from a row that is already in ascending order with no duplicates.

setFromRowAsc [1 2 3]          == %[1 2 3]setFromRowAsc [{a} {b} {c}]    == %[a b c]setFromRowAsc [0]              == %[0]

setToRow

(setToRow xs)> xs : Set a> Row a

Converts a set to a row.

setToRow %[1 2 3]    == [1 2 3]setToRow %[a b c]    == [a b c]setToRow %[]         == []

setLen

(setLen xs)> xs : Set a> Nat

Returns the number of elements in a set.

setLen %[]         == 0setLen %[1 2 3]    == 3setLen %[a]        == 1

setToList

(setToList xs)> xs : Set a> List a

Converts a set to a list.

setToList %[1 2 3]    == [1 [2 [3 0]]]setToList %[a b]      == [%a [%b 0]]setToList %[]         == 0  ; NIL

setFoldl

(setFoldl f z xs)> f  : (b > a > b)> z  : b> xs : Set a> b

Left-associative fold over a set.

setFoldl add 0 %[1 2 3]              == 6setFoldl mul 1 %[1 2 3 4]            == 24setFoldl (flip CONS) NIL %[1 2 3]    == [3 [2 [1 0]]]

setFoldr

(setFoldr f z xs)> f  : (a > b > b)> z  : b> xs : Set a> b

Right-associative fold over a set.

setFoldr (flip CONS) NIL %[1 2 3]     == [[[0 3] 2] 1]setFoldr sub 0 %[1 2 3]               == 1setFoldr strWeld {} %[{a} {b} {c}]    == %abc

setIns

(setIns e xs)> e  : a> xs : Set a> Set a

Inserts an element into a set.

setIns 3 %[1 2]      == %[1 2 3]setIns 2 %[1 2]      == %[1 2]  ; No change if element already existssetIns {a} %[b c]    == %[a b c]

setDel

(setDel e xs)> e  : a> xs : Set a> Set a

Removes an element from a set.

setDel 2 %[1 2 3]      == %[1 3]setDel 4 %[1 2 3]      == %[1 2 3]  ; No change if element doesn't existsetDel {b} %[a b c]    == %[a c]

setHas

(setHas e xs)> e  : a> xs : Set a> Bool

Checks if an element is in a set.

setHas 2 %[1 2 3]      == 1setHas 4 %[1 2 3]      == 0setHas {b} %[a b c]    == 1

setWeld

(setWeld xs ys)> xs : Set a> ys : Set a> Set a

Combines two sets.

setWeld %[1 2] %[2 3]    == %[1 2 3]setWeld %[a b] %[c d]    == %[a b c d]setWeld %[] %[1 2 3]     == %[1 2 3]

setUnion

(setUnion xs ys)> xs : Set a> ys : Set a> Set a

Alias for setWeld. Combines two sets.

setUnion %[1 2] %[2 3]    == %[1 2 3]setUnion %[a b] %[c d]    == %[a b c d]setUnion %[] %[1 2 3]     == %[1 2 3]

setCatRow

(setCatRow xs)> xs : Row (Set a)> Set a

Combines a row of sets into a single set.

setCatRow [%[1 2] %[2 3] %[3 4]]    == %[1 2 3 4]setCatRow [%[a b] %[c] %[d e]]      == %[a b c d e]setCatRow [%[] %[1] %[]]            == %[1]

setCatList

(setCatList xs)> xs : List (Set a)> Set a

Combines a list of sets into a single set.

setCatList [%[1 2] [%[3 4] [%[2 3] 0]]]    == %[1 2 3 4]setCatList [%[a b] [%[c] [%[d e] 0]]]      == %[a b c d e]setCatList [%[] [%[1] [%[] 0]]]            == %[1]

setCatRowAsc

(setCatRowAsc x)> xs : Row (Set a)> Set a

Combines a row of sets that are already in ascending order.

setCatRowAsc [%[1 2] %[3 4] %[5 6]]    == %[1 2 3 4 5 6]setCatRowAsc [%[a b] %[c d] %[e f]]    == %[a b c d e f]setCatRowAsc [%[] %[1] %[2 3]]         == %[1 2 3]

setMin

(setMin xs)> xs : Set a> a

Returns the minimum element in a set.

setMin %[1 2 3]    == 1setMin %[c b a]    == asetMin %[5]        == 5

setMax

(setMax xs)> xs : Set a> a

Returns the maximum element in a set.

setMax %[1 2 3]    == 3setMax %[c b a]    == csetMax %[5]        == 5

setPop

(setPop xs)> xs : Set a> (a, Set a)

Removes and returns the minimum element from a set.

setPop %[1 2 3 4]    == [1 %[2 3 4]]setPop %[a b c]    == [%a %[b c]]setPop %[5]        == [5 %[]]

setDrop

(setDrop n xs)> n  : Nat> xs : Set a> Set a

Removes the first n elements from a set.

setDrop 2 %[1 2 3 4]    == %[3 4]setDrop 1 %[a b c]      == %[b c]setDrop 0 %[1 2 3]      == %[1 2 3]

setTake

(setTake n xs)> n  : Nat> xs : Set a> Set a

Keeps the first n elements of a set.

setTake 2 %[1 2 3 4]    == %[1 2]setTake 3 %[a b c d]    == %[a b c]setTake 0 %[1 2 3]      == %[]

setSplitAt

(setSplitAt i xs)> i  : Nat> xs : Set a> (Set a, Set a)

Splits a set at a given index.

setSplitAt 2 %[1 2 3 4]    == [%[1 2] %[3 4]]setSplitAt 1 %[a b c]      == [%[a] %[b c]]setSplitAt 0 %[1 2 3]      == [%[] %[1 2 3]]

setSplitLT

(setSplitLT n xs)> n  : a> xs : Set a> (Set a, Set a)

Splits a set into elements less than a given value and the rest.

setSplitLT 3 %[1 2 3 4 5]      == [%[1 2] %[3 4 5]]setSplitLT {c} %[a b c d e]    == [%[a b] %[c d e]]setSplitLT 0 %[1 2 3]          == [%[] %[1 2 3]]

setIntersect

(setIntersect xs ys)> xs : Set a> ys : Set a> Set a

Returns the intersection of two sets.

setIntersect %[1 2 3] %[2 3 4]    == %[2 3]setIntersect %[a b c] %[b c d]    == %[b c]setIntersect %[1 2 3] %[4 5 6]    == %[]

setSub

(setSub xs ys)> xs : Set a> ys : Set a> Set a

Subtracts one set from another.

setSub %[1 2 3] %[2 3]      == %[1]setSub %[a b c d] %[b d]    == %[a c]setSub %[1 2 3] %[4 5 6]    == %[1 2 3]

setElem

(setElem n xs)> n  : Nat> xs : Set a> a

Returns the nth element of a set.

setElem 1 %[1 2 3]    == 2setElem 0 %[a b c]    == %asetElem 2 %[x y z]    == %z

setDifference

Alias for setSub.

setInsert

Alias for setIns.

setSubtract

Alias for setSub.

setIntersection

Alias for setIntersect.